Let-7 miRNAs Modulate the Activation of NF-κB by Targeting TNFAIP3 and Are Involved in the Pathogenesis of Lupus Nephritis
نویسندگان
چکیده
TNFAIP3 is a ubiquitin-editing enzyme that negatively regulates multiple NF-κB signaling pathways and dysregulation of TNFAIP3 is related to systemic lupus erythematosus (SLE). Although there exists evidence indicating that microRNAs (miRNAs) modulate the expression of TNFAIP3, whether and how miRNAs regulate TNFAIP3 and contribute to lupus nephritis (LN) is still not well understood. In this study, we screened eleven selected miRNAs that potentially regulated TNFAIP3 expression by dual luciferase assay and found that Let-7 miRNAs repressed TNFAIP3 expression by targeting the 3'UTR of TNFAIP3 mRNA. Overexpression of Let-7 miRNAs led to increased phosphorylation and sustained degradation of IκBα and enhanced phosphorylation of p65 following TNFα stimulation and promoted SeV-induced production of cytokines in HEK293T cells. In addition, the expression of Let-7 miRNAs was significantly up-regulated, and TNFAIP3 level was remarkably down-regulated in samples from LN patients compared control samples. Our findings have uncovered Let-7-TNFAIP3-NF-κB pathway that is involved in LN and thus provided a potential target for therapeutic intervention.
منابع مشابه
A20 overexpression alleviates pristine-induced lupus nephritis by inhibiting the NF-κB and NLRP3 inflammasome activation in macrophages of mice.
BACKGROUND Lupus nephritis is an autoimmune inflammatory disease and urgently needs effective anti-inflammation therapies. A20, tumor necrosis factor alpha induced protein 3 (TNFAIP3), is a key negative regulator of inflammation, however whether A20 can regulate lupus nephritis has not been clarified. This study aimed at investigating the potential therapeutic effect of A20 on renal inflammatio...
متن کاملMicroRNAs miR-125a and miR-125b constitutively activate the NF-κB pathway by targeting the tumor necrosis factor alpha-induced protein 3 (TNFAIP3, A20).
Constitutive activation of the NF-κB pathway is associated with diffuse large B-cell lymphoma (DLBCL) pathogenesis, but whether microRNA dysfunction can contribute to these events remains unclear. Starting from an integrative screening strategy, we uncovered that the negative NF-κB regulator TNFAIP3 is a direct target of miR-125a and miR-125b, which are commonly gained and/or overexpressed in D...
متن کاملHyperglycemia- Induced NF-κB Activation Increases microRNA-146a Expression in Human Umbilical Vein Endothelial Cells
Background & objectives: Nuclear Factor kappa B (NF-κB), a master switch transcription factor, plays a critical role in the progression and development of hyperglycemia-induced microangiopathy. Hyperglycemia activates NF-κB, and subsequently increases pro-inflammatory cytokines such as TNF-α, IL-6 and IL-1β leading to development of inflammation. Some new studies have revealed the involvement o...
متن کاملVGB3 Induces Apoptosis by Inhibiting Phosphorylation of NF-κB p65 at Serine 536 in the Human Umbilical Vein Endothelial Cells
Background and objectives: Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) inhibition results in an increase in apoptosis. It has been demonstrated that NF-κB subunit p65 phosphorylation at the IκB kinase phosphorylation site serine 536 (Ser536) is essential for the NF-κB nuclear translocation and activation. Therefore, NF-κB can be downregulated by suppressing its phosph...
متن کاملOzone therapy could attenuate tubulointerstitial injury in adenine-induced CKD rats by mediating Nrf2 and NF-κB
Objective(s): This study aims to determine the effects of ozone therapy on restoring impaired Nrf2 activation to ameliorate chronic tubulointerstitial injury in rats with adenine-induced CKD. Materials and Methods: Sprague–Dawley rats were fed with 0.75% adenine-containing diet to induce CKD and chronic tubulointerstitial injury. Ozone therapy was administered by rectal insufflation. After 4 we...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2015